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Received 1 June 1989 

Abstract. An king-Potts model is introduced and the Bragg-Williams mean-field method 
and Monte Carlo simulation are used to study its properties on the FCC lattice. It is shown 
that for certain values of the parameters in the Hamiltonian the model exhibits phase 
behaviour that can be interpreted as representing solid-liquid phase equilibria in binary 
alloy mixtures. The first-order transition properties of the pure six-state Potts model on 
the FCC lattice are also reported. 

1. Introduction 

Ising-Potts models combine features of the Ising spin-f model and the q-state Potts 
model. Walker and co-workers have recently applied Ising-Potts models to closed-loop 
miscibility behaviour in binary liquid mixtures [ 1-31. Ferromagnetic Ising interactions 
in their models lead to binary phase separation at low temperatures. As the temperature 
is reduced further, the ferromagnetic Potts variables also order. This represents the 
formation of hydrogen bonds between unlike molecules, and it leads to remixing at 
the lowest temperatures. In this paper we introduce an Ising-Potts model that can be 
used to represent solid-liquid equilibria in binary mixtures. In our model the onset 
of long-range order in the ferromagnetic Potts spins will represent solidification, while 
ordering of the Ising spins will still represent binary phase separation that can now 
take place either in the solid or liquid phases. The application of Ising-Potts models 
to solid-liquid equilibria is particularly appropriate because, like solidification, the 
ordering of Potts spins is normally a first-order transition. Simple lattice models of 
the type introduced here may form the basis for needed semiempirical models for 
solid-liquid equilibria, just as simple Ising-type models have formed the basis for 
successful liquid mixture excess property models [4]. In 0 2 the Ising-Potts model is 
described, and in 0 3 we show, using the Bragg-Williams mean-field method, that this 
model generates commonly seen solid-liquid equilibrium phase diagrams. We have 
also carried out Monte Carlo simulations of a simple Ising-Potts model as a check on 
the mean-field method; the results are reported in 04, together with the transition 
properties of the pure six-state Potts model on the FCC lattice, a special case of the 
Ising-Potts mixture model. 

2. The model 

We consider the following mixed-spin Ising-Potts model where each site of a regular 
lattice is occupied by both a two-state Ising spin and a q-state Potts spin. The reduced 
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Hamiltonian is 

where s, = *l specifies the Ising spin state at lattice site i, a, = 1, . . . , q specifies the 
Potts state at site i, and 

i f x = y  
otherwise, 8x3, = {l 0 

Only nearest-neighbour and single-site interactions are included in the Hamiltonian. 
Notice that when L,  = L2 = L3 = 0 the model reduces to the I ( ; )  model, and that when 
K = H = 0 and L1 = L2 = L3 = L # 0 it reduces to the q-state Potts model. Also, one 
can show that when L2 = L3 = 0, the model is equivalent to the lattice-gas (site-diluted) 
Potts model [ 5 ] .  

We apply the model to solid-liquid phase equilibria by interpreting it in the 
following manner. If there are N particles in a binary mixture, then let the system 
volume be divided into N identical cells centred at the vertices of a regular, space-filling 
lattice. Let each cell be occupied by a single particle-since vacant or multiply occupied 
cells are not allowed, pressure-density effects are not included in the model. The Ising 
spin associated with a particular lattice site will specify the identity of the particle 
occupying the corresponding cell. For a binary mixture s, will take two values: *l. 
Nearest-neighbour Ising spins interact in the usual way for mixture models: ferromag- 
netic interactions ( K  > 0) lead to phase separation at low temperatures, which in the 
pure Ising model occurs as a second-order transition at a critical point. Thus, we 
expect that any Ising transition in the Ising-Potts model will correspond to a composi- 
tional order-disorder transition in either the solid or liquid phases. Note also that, 
although one might expect to see several Ising interaction energies in the mixture 
Hamiltonian, in fact lattice relationships can be used to eliminate all but one Ising 
parameter, as in the simple Ising model [6]. 

The foregoing is just the standard correspondence between the Ising ferromagnet 
and a binary lattice mixture [7]. To complete the correspondence between Ising-Potts 
models and binary alloys, we associate the Potts spin on each lattice site with the local 
position of the particle in the cell centred at the site. If two nearest-neighbouring 
particles are in the same relative positions (i.e. if the Potts spins have the same value), 
we say that they are at the preferred crystalline separation, as opposed to simply being 
nearest neighbours in the liquid phase. These ‘solidified’ particles gain an additional 
energy of interaction, L, that serves to promote solidification and that determines the 
melting temperature. This correspondence makes apparent the motivation for including 
the Potts spins in the model: for large q the pure, zero-field Potts model is known to 
undergo a first-order transition, and thus, for suitably chosen parameters, we expect 
the Potts spins in the Ising-Potts model to also exhibit a first-order transition that will 
represent solidification. The Hamiltonian in equation (1) actually contains three Potts 
energy parameters: L ,  , L2 and L 3 .  These are related, respectively, to the pure A, pure 
B and mixture melting temperatures. We expect that L,>O, L2>0 and L,>O will 
promote solidification of pure A, pure B and the solid solution, respectively. Finally, 
since fusion is accompanied by a decrease in order, and the parameter q is a measure 
of the increased disorder in the liquid state, q can be related to the molar entropy of 
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fusion. By using the mean-field result for the latent heat of the pure q-state Potts 
model [8], we find that 

A S / R = -  ( q - 2 )  ln(q - 1 ) .  
9 

3. The mean-field approximation 

Since we are interested in mixtures, it is convenient to switch from magnetic notation 
to mixture notation. If s, = + 1  corresponds to an A molecule and s, = -1 corresponds 
to a B molecule, the Hamiltonian can be rewritten in terms of compositional variables 
as 

where N, is the number of i molecules, Nv is the number of nearest-neighbour pairs 
of type i j ,  and xrJU is the fraction of the nearest-neighbour pairs of type i j  whose 
associated Potts spins are both in state U. 

The Bragg-Williams mean-field approximation is equivalent to the following 
substitutions [9]: 

N,, = Nzxf/2 Nu = Nzx,~, X,JU = xI&JU 

where x, is the mole fraction of species i, x,, is the fraction of molecules of type i that 
are in Potts state U, and z is the lattice coordination number. Making these substitutions 
gives the mean-field Hamiltonian 

- @ X /  N = K ( 2 . x ~ -  1 ) 2 Z / 2 +  H(2xA- 1) 

+ [ LlxiX’,uz/2 + L2( 1 - xA)2xi,z/2 + L 3 x A (  1 - xA)xA&B$] .  
U =  1 

The configurational partition function is 

z =  w ( x A ,  {xAu) ,  { x B u } )  
xA ,{xAv) ,{xBm} 

where w is the number of configurations possible for given mole and Potts fractions: 

N! 
w =  nu= 1 (NxAxAU) !( NxBxBU) ! ’ 

Approximating N-I In 2 by the largest term in the summation, we get 

N-’ In Z=-f  [ R A f A v  l n ( . f A . f A v ) + % B . f B u  l n ( . f B R B , ) ] + ( K z / 2 ) ( R A - R B ) 2 +  H(2.fA-1) 
c7 

4 + [( LIz/2).f;R$,, + (&z/2).f;.f;, + ( L3z).fA%BxA,.,.fBr] 
u = l  

where the equilibrium values Ri and Rfv correspond to the largest term. 
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For Li > 0, we look for a ferromagnetic solution for the Potts ordering. Since all 
q states are equivalent, we can assume that the Potts spins will order in state 1 .  By 
analogy with the simple Potts model [8], we can define two Potts order parameters sA 
and sB by 

L 1  + (9 - l ) s A l / q  i f a = l  
if u = 2 , .  . . , q { ( 1  - XArr = 

with similar expressions for sB. Then, the Bragg-Williams expression for the free 
energy, f = -N- '  In 2, becomes 

f = Z A  In %A + %B In Z B  - (Kz)(2ZA - 1 B ) 2  - H(2ZA - 1 )  - L1zZ;( 1 + qlS$,)/24 

-L2zZ;(l +qq,Si)/2q-L,z%AZB(l + q , f A S B ) / q  

+ RA[ ( 1 + 41 SA) In( 1 + 41 FA) + 41 ( 1 - SA) In( 1 - SA) - In q]/ 

+ ZB[( 1 + q l S B )  In( 1 + (IISB) + q1(1 - S B )  In( 1 - ? B ) - q  In q]/q 

where q1 = q - 1,  ZB = 1 - % A ,  and the equilibrium values TA, SA, and SB are those that 
minimise f at a given temperature and field strength. By differentiating and equating 
the partial derivatives of the free energy to zero, one can obtain the mean-field 
expressions for the composition and the Potts order parameters. One gets a set of 
coupled nonlinear equations that must be solved numerically; for convenience, we 
used a numerical optimisation routine to minimise f directly. The mixture properties 
and phase diagrams shown below were obtained by minimising f at many different 
temperatures and field strengths, so as to locate those points in the phase space where 
the solutions underwent qualitative changes corresponding to phase transitions. 

In figures 1-3 we show three types of phase behaviour exhibited by the Ising-Potts 
model. Other types of behaviour are possible; here the model parameters were chosen 
so as to represent three specific binary alloy mixtures: Pt-Au, Cu-Ag and Ni-Pb. In 
each case the full curve shows the mean-field phase diagram while, for comparison, 
the broken curve shows the smoothed experimental data [lo]. In these calculations 

2000 . 
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0 0 2  0 4  0 6  0 8  1 0  0 0 2  0 4  0 6  0 8  1 0  

Figure 2. Cu-Ag phase diagram (-, BWMF; ---, 
smoothed data). The Ising-Potts parameters are K = 

Cu mole froction Pt mole froction 

Figure 1. Pt-Au phase diagram (-, BWMF;  ---, 
smoothed data). The Ising-Potts parameters are K = 

600T-I. 
1 2 7 . 5 ~ - ' ,  L ,  =648.7r-l ,  ~ , = 4 4 8 . 5 ~ - ' ,  L , =  ~ o . o T - ~ , L ,  = 4 5 5 . 3 ~ - ~ , ~ , = 4 1 4 . 1 ~ - ~ , ~ , = 2 3 5 ~ - ~ .  
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all but two of the model parameters were fitted to pure component properties. The 
parameter q was set by matching the mean-field solution for the entropy of fusion of 
the pure Potts model to the experimental value for the dimensionless entropy of fusion 
of the pure metals. AS/ R ranges from 0.956 to 1.26 for the six metals considered here 
[ 111, implying that 5.5 6 q 6 6.9; for convenience q = 6 was chosen. The three binary 
mixtures and the six pure components all solidify to FCC lattices; accordingly, the 
lattice coordination number was set to twelve. The remaining pure component para- 
meters, L,  and L z ,  were chosen to match the pure Potts model mean-field transition 
temperature [8] 

to the experimental melting temperatures of the pure metals [lo]. The values are given 
in figures 1-3. Finally, the two binary parameters, K and L,, were adjusted for each 
binary to fit the experimental phase diagrams. 

The Pt-Au binary is the simplest of the three systems and corresponds to a relatively 
ideal mixture that only shows solid-solid phase separation at low temperatures. Non- 
idealities are greater in the Cu-Ag mixture and lead to solid-solid immiscibility at 
higher temperatures and to a binary eutectic. Finally, the Ni-Pb mixture is the most 
non-ideal, even exhibiting liquid-liquid immiscibility. It also shows two eutectics, 
although the eutectic point at low temperatures and high Pb compositions cannot be 
seen on the scale of figure 3. As can be seen in the figures, the Ising-Potts model is 
capable of showing all three types of behaviour. The fit suffers somewhat from the 
artificial symmetry imposed by the underlying Ising model but it is qualitatively 
reasonable for all three systems. 

4. Monte Carlo simulations 

As a check on the mean-field method, we have carried out Monte Carlo simulations 
for a simple Ising-Potts model. The simulation was performed at constant temperature 
and field. Since the field only couples to the Ising spins, in the mixture interpretation 
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- 0 1  

it represents the difference in chemical potentials of the two components. Thus, the 
simulation yields mixture properties in the semigrand ensemble in which the total 
number of particles is fixed but the composition can vary [ 6 ] .  The system simulated 
consisted of 4000 king spins and 4000 six-state Potts spins arranged in a FCC lattice 
with simple cubic periodic boundary conditions. Some runs were started from ordered 
initial configurations in which all the Ising spins were of one type and all the Potts 
spins were in a single state. Other runs were started from the final configurations of 
earlier runs or from random initial configurations. New configurations were generated 
by two types of trial move. In the first, an Ising spin was flipped, while keeping the 
Potts state fixed, and the new configuration was accepted or rejected on the basis of 
the usual Boltzmann criterion. In the second trial move, a Potts spin was changed to 
a new state randomly chosen from the q - 1 remaining states, and again the move was 
accepted or rejected using the Boltzmann criterion. A Monte Carlo step (MCS) consisted 
of a regular sweep over all the spins on the lattice, trying in turn to flip each Ising 
spin and to change each Potts spin. Thus, each MCS corresponds to 8000 configurations. 
Runs consisted of 1000-2000 Monte Carlo steps. In the one-phase regions the lattice 
equilibrated within 100 MCS. Even near phase transitions, 200 MCS was usually sufficient 
to reach metastable equilibrium, while 1000 MCS was short enough not to sample 
fluctuations between the coexisting phases. As an example, figure 4 shows the evolution 
of the running averages of the mole fraction, the configurational energy and the Potts 
order parameter, for a run at conditions close to a field-induced first-order transition. 
The averages were computed separately for the first 200 MCS and for the last 800 MCS. 

Note that by 2 0 0 ~ ~ s  the system has already relaxed from its initial state, a totally 
ordered configuration. Error estimates for the simulation averages can be determined 
by the method of Jacucci and Rahman [12,13]. For the run shown in figure 4, the 
standard deviations of the mean as a percentage of the mean, lOOa((x))/(x), are 0.1, 
0.1 and 0.3% respectively. 
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0 1 1 - - 4 i - - r _ F 3  sp 
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Figure 4. Running averages of the mole fraction (xA), 
the relative configurational energy ( e *  = 
e ( &  H ) / e ( P ,  C O ) ) ,  and the Potts order parameter 
(sA), during a Monte Carlo simulation of the simple 
Ising-Potts model at H = 0.2, L, = L, = 0.4277, and 
L, = K = 0. 
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Phase transitions were located by checking for hysteresis on changing the initial 
conditions. This behaviour is seen in figure 5 which shows typical results for the 
composition, the configurational energy and the Potts order parameter for a series of 
simulations carried out at constant temperature. At high field the alloy is almost pure 
solid A, while at low fields it exists as a near-equimolar liquid mixture. The field-induced 
first-order transition was located more precisely by the method of thermodynamic 
integration [14]. The effect on the free energy of varying the temperature or the field 
strength is given by 

where ( m )  is the average magnetisation and ( e )  = (-P%e/ N - H m )  is the average reduced 
configurational energy per particle, both determined from the simulations. As /3 +CO 

and H + 03, the ferromagnetic interaction energies dominate, the lattice becomes totally 
ordered, and the free energy can be calculated exactly. Alternatively, as p + 0 and 
H + 0, entropy dominates, the spins become completely uncorrelated, and the free 
energy can again be calculated exactly. By carrying out two series of simulations, one 
for ordered states and the other for disordered states, the free energy can be determined 
along two approaches to the phase transition by numerically integrating the energy 
and magnetisation data. The transition can then be located at the intersection of the 
two branches of the free energy function. We carried out this thermodynamic integra- 
tion by fitting the simulation data to cubic splines in H or P as appropriate and then 
using spline quadrature to perform the integrations [ 151. 

Figure 6 shows the Monte Carlo phase diagram for the symmetric Ising-Potts 
binary mixture ( K  = 0, L ,  = L2 > 0, L3 = 0, and q = 6 ) ;  the points represent the coexisting 
phases as determined from thermodynamic integration of the Monte Carlo simulation 
data-the full curves serve as a guide for the eye. Because of the symmetry of this 
system about H=O the simulations were only performed for HLO. This mixture 
shows solid-liquid equilibrium, freezing point depression, and also solid-solid partial 
immiscibility with a binary eutectic. From thermodynamic integration of the simulation 

0 7 1  1 
0 0 2  0 4  0 6  0 0  1 0  

Mole fraction 

Figure 6. Phase diagram of a symmetric king-Potts binary mixture (-, MC results; 
_ _ _  , B W M F )  (L, = L,> 0, L, = K =O). At the melting point of the pure materials L, = 
0.353. 
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Table 1. Properties of the simple Ising-Potts model at coexistence as determined by Monte 
Carlo simulation and thermodynamic integration. The superscripts s and I denote solid 
and liquid properties, respectively. The latter are not given for temperatures below the 
eutectic temperature. At the melting temperature of the pure materials L ,  = Lz  = 0.3525 
and K = L,  = 0. 

1.000 4.000 6.22 1 .ooo 0.559 1 .000 0.779 1.48 
0.854 0.235 2.79 0.717 0.509 0.949 0.909 1.91 
0.824 0.128 2.77 0.635 0.420 0.948 0.925 2.04 
0.803 0.063 2.76 0.573 0.392 0.949 0.938 2.15 
0.784 0.01 1 2.77 0.513 0.392 0.951 0.948 2.25 
0.765 0.000 2.82 - - 0.961 0.960 2.40 
0.745 0.000 2.88 - - 0.970 0.968 2.54 

Table 2. Size dependence of the Monte Carlo results for the properties of the pure six-state 
Potts model on the FCC lattice. Also shown are the results of interpolating with N-' to 
the thermodynamic limit. 

N L -f e' eb s 

2048 0.3531 2.221 0.5656 1.483 0.7803 
4000 0.3525 2.216 0.5591 1.476 0.7793 
CO 0.352 2.21 0.552 1.47 0.778 

results at zero field we estimate that the reduced eutectic temperature is T /  T,,, = 0.78. 
Some of the coexistence properties are also given in table 1. For comparison, the 
mean-field results for this system are also shown in figure 6. Although the mean-field 
phase diagram is not quantitatively accurate, it is qualitatively correct. This suggests 
that the mean-field results of the previous section give a reasonable picture of the types 
of phase diagrams possible in the Ising-Potts model. 

In the limit of high field the symmetric Ising-Potts model reduces to a pure six-state 
Potts model on an FCC lattice; the simulations indicated that at moderate temperatures 
H = 4 was sufficient to completely order the Ising spins. We determined the transition 
properties of pure Potts model by thermodynamic integration of the high-field data. 
To check the size dependence of the simulation results, the high-field simulations were 
repeated for two lattice sizes: N = 2048 and N = 4000. The results, shown in table 2, 
indicate that the size dependence is weak for these large values of N. For a first-order 
transition the properties should extrapolate with N-'  to the thermodynamic limit 
[16, 171-this gives the following Potts model transition properties: L = 0.352,f= -2.21, 
e'= 1.47, e '=0 .552  and s=O.778. Note that f differs from the free energy of the 
Ising-Potts model at the melting point of pure A. The difference is due to the Ising 
magnetic field term ( H  = 4), which does not appear in the pure Potts model. 

5. Conclusions 

In modelling phase equilibria between two or more phases, distinct thermodynamic 
models are often used for each phase and the equilibrium phase boundaries are 
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determined by matching chemical potentials in the single-phase models. This is, in 
fact, the traditional approach to modelling solid-liquid equilibria. However, it is 
sometimes desirable to have a single Hamiltonian that produces the entire range of 
phase behaviour. Having a single self-consistent model is important, for example, 
whenever second-order phase transitions may occur because of the difficulty of match- 
ing two independent single-phase models at a critical point or critical end point. The 
single-model approach to solid-liquid equilibria can take the form of detailed models 
based on complex intermolecular potentials handled by computer simulations or 
integral equation theory [ 181, but such calculations are complex and time consuming. 
Here we have shown that a simple Ising-Potts lattice model can capture many of the 
main features of phase equilibrium in binary alloy mixtures. We have also presented 
Monte Carlo results that suggest that the mean-field method gives qualitatively accurate 
phase diagrams for these models. Higher-order mean-field methods such as the Bethe 
or Kikuchi methods, or mean-field renormalisation techniques [ 191 could be used to 
obtain greater accuracy in the transition properties. 
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